
Matrix Algebra: Theory, Computations and Applications in Statistics by Gentle
US $49,95US $49,95
Mo, 28. Jul, 01:26Mo, 28. Jul, 01:26
Bild 1 von 6






Galerie
Bild 1 von 6






Ähnlichen Artikel verkaufen?
Matrix Algebra: Theory, Computations and Applications in Statistics by Gentle
US $49,95
Ca.EUR 42,66
Artikelzustand:
Neuwertig
Buch, das wie neu aussieht, aber bereits gelesen wurde. Der Einband weist keine sichtbaren Gebrauchsspuren auf. Bei gebundenen Büchern ist der Schutzumschlag vorhanden (sofern zutreffend). Alle Seiten sind vollständig vorhanden, es gibt keine zerknitterten oder eingerissenen Seiten und im Text oder im Randbereich wurden keine Unterstreichungen, Markierungen oder Notizen vorgenommen. Der Inneneinband kann minimale Gebrauchsspuren aufweisen. Minimale Gebrauchsspuren. Genauere Einzelheiten sowie eine Beschreibung eventueller Mängel entnehmen Sie bitte dem Angebot des Verkäufers.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Versand:
US $5,97 (ca. EUR 5,10) USPS Media MailTM.
Standort: Henderson, Nevada, USA
Lieferung:
Lieferung zwischen Sa, 13. Sep und Do, 18. Sep nach 94104 bei heutigem Zahlungseingang
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
Sicher einkaufen
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:365726680738
Artikelmerkmale
- Artikelzustand
- Publication Date
- 2024-03-07
- Book Title
- Matrix Algebra: Theory, Computations and Applications in Statisti
- Edition Number
- 3
- ISBN
- 9783031421433
Über dieses Produkt
Product Identifiers
Publisher
Springer International Publishing A&G
ISBN-10
3031421434
ISBN-13
9783031421433
eBay Product ID (ePID)
18061841111
Product Key Features
Number of Pages
Xxxii, 693 Pages
Language
English
Publication Name
Matrix Algebra : Theory, Computations and Applications in Statistics
Publication Year
2024
Subject
Mathematical & Statistical Software, Probability & Statistics / General, General, Algebra / General
Type
Textbook
Subject Area
Mathematics, Computers
Series
Springer Texts in Statistics Ser.
Format
Hardcover
Dimensions
Item Length
10 in
Item Width
7 in
Additional Product Features
Edition Number
3
Dewey Edition
23
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
512.9434
Table Of Content
Part I Linear Algebra.- 1 Basic Vector/Matrix Structure and Notation.- 2 Vectors and Vector Spaces.- 3 Basic Properties of Matrices.- 4 Vector/Matrix Derivatives and Integrals.- 5 Matrix Transformations and Factorizations.- 6 Solution of Linear Systems.- 7 Evaluation of Eigenvalues and Eigenvectors.
Synopsis
This book presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and previous editions had essential updates and comprehensive coverage on critical topics in mathematics. This 3rd edition offers a self-contained description of relevant aspects of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices, in solutions of linear systems and in eigenanalysis. It also includes discussions of the R software package, with numerous examples and exercises. Matrix Algebra considers various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes special properties of those matrices; as well as describing various applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. It begins with a discussion of the basics of numerical computations and goes on to describe accurate and efficient algorithms for factoring matrices, how to solve linear systems of equations, and the extraction of eigenvalues and eigenvectors. It covers numerical linear algebra-one of the most important subjects in the field of statistical computing. The content includes greater emphases on R, and extensive coverage of statistical linear models. Matrix Algebra is ideal for graduate and advanced undergraduate students, or as a supplementary text for courses in linear models or multivariate statistics. It's also ideal for use in a course in statistical computing, or as a supplementary text forvarious courses that emphasize computations., Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. The first part of this book presents the relevant aspects of the theory of matrix algebra for applications in statistics. This part begins with the fundamental concepts of vectors and vector spaces, next covers the basic algebraic properties of matrices, then describes the analytic properties of vectors and matrices in the multivariate calculus, and finally discusses operations on matrices in solutions of linear systems and in eigenanalysis. This part is essentially self-contained. The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics. The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations. The book includes a large number of exercises with some solutions provided in an appendix., This book presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and previous editions had essential updates and comprehensive coverage on critical topics in mathematics. This 3rd edition offers a self-contained description of relevant aspects of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices, in solutions of linear systems and in eigenanalysis. It also includes discussions of the R software package, with numerous examples and exercises. Matrix Algebra considers various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes special properties of those matrices; as well as describing various applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. It begins with a discussion of the basics of numerical computations and goes on to describe accurate and efficient algorithms for factoring matrices, how to solve linear systems of equations, and the extraction of eigenvalues and eigenvectors. It covers numerical linear algebra--one of the most important subjects in the field of statistical computing. The content includes greater emphases on R, and extensive coverage of statistical linear models. Matrix Algebra is ideal for graduate and advanced undergraduate students, or as a supplementary text for courses in linear models or multivariate statistics. It's also ideal for use in a course in statistical computing, or as a supplementary text forvarious courses that emphasize computations.
LC Classification Number
QA276-280
Artikelbeschreibung des Verkäufers
Info zu diesem Verkäufer
FlipTheStrip
99,8% positive Bewertungen•6,4 Tsd. Artikel verkauft
Angemeldet als privater VerkäuferDaher finden verbraucherschützende Vorschriften, die sich aus dem EU-Verbraucherrecht ergeben, keine Anwendung. Der eBay-Käuferschutz gilt dennoch für die meisten Käufe.
Verkäuferbewertungen (1.976)
- r***h (157)- Bewertung vom Käufer.Letzter MonatBestätigter KaufThank you
- eBay automated feedback- Bewertung vom Käufer.Letzter MonatOrder completed successfully—tracked and on time
- eBay automated feedback- Bewertung vom Käufer.Letzter MonatOrder completed successfully—tracked and on time
Noch mehr entdecken:
- Algebra Studium und Erwachsenenbildung,
- Lineare Algebra Studium und Erwachsenenbildung,
- Englische Studium und Erwachsenenbildung Algebra,
- Deutsche Studium und Erwachsenenbildung Algebra,
- Algebra Studium und Erwachsenenbildung im Taschenbuch-Format,
- Algebra Studium und Erwachsenenbildung als gebundene Ausgabe,
- Algebra Studium und Erwachsenenbildung Ab 2010,
- Deutsche Studium und Erwachsenenbildung Lineare Algebra,
- Lineare Algebra Studium und Erwachsenenbildung Ab 2010,
- Lineare Algebra Studium und Erwachsenenbildung im Taschenbuch-Format