|Eingestellt in Kategorie:
Dieser Artikel ist nicht mehr vorrätig.
Ähnlichen Artikel verkaufen?

Deep Learning Quick Re... von Bernico, Michael Digital (elektronisch geliefert)-

Ursprünglicher Text
Deep Learning Quick Re... by Bernico, Michael Digital (delivered electronically)
FREE US DELIVERY | ISBN: 1788837991 | Quality Books
World of Books USA
(1195638)
Angemeldet als gewerblicher Verkäufer
US $15,17
Ca.EUR 12,95
Artikelzustand:
Sehr gut
Versand:
Kostenlos USPS Ground Advantage®.
Standort: Florida, USA
Lieferung:
Lieferung zwischen Mi, 17. Sep und Di, 23. Sep nach 94104 bei heutigem Zahlungseingang
Liefertermine - wird in neuem Fenster oder Tab geöffnet berücksichtigen die Bearbeitungszeit des Verkäufers, die PLZ des Artikelstandorts und des Zielorts sowie den Annahmezeitpunkt und sind abhängig vom gewählten Versandservice und dem ZahlungseingangZahlungseingang - wird ein neuem Fenster oder Tab geöffnet. Insbesondere während saisonaler Spitzenzeiten können die Lieferzeiten abweichen.
Rücknahme:
30 Tage Rückgabe. Käufer zahlt Rückversand. Wenn Sie ein eBay-Versandetikett verwenden, werden die Kosten dafür von Ihrer Rückerstattung abgezogen.
Zahlungen:
    Diners Club

Sicher einkaufen

eBay-Käuferschutz
Geld zurück, wenn etwas mit diesem Artikel nicht stimmt. Mehr erfahreneBay-Käuferschutz - wird in neuem Fenster oder Tab geöffnet
Der Verkäufer ist für dieses Angebot verantwortlich.
eBay-Artikelnr.:305515974187
Zuletzt aktualisiert am 28. Jul. 2025 20:42:28 MESZAlle Änderungen ansehenAlle Änderungen ansehen

Artikelmerkmale

Artikelzustand
Sehr gut: Buch, das nicht neu aussieht und gelesen wurde, sich aber in einem hervorragenden Zustand ...
ISBN
1788837991
EAN
9781788837996
Date of Publication
2023-04-02
Release Title
Deep Learning Quick Reference
Artist
Bernico, Michael
Brand
N/A
Colour
N/A
Book Title
Deep Learning Quick Reference

Über dieses Produkt

Product Identifiers

Publisher
Packt Publishing, The Limited
ISBN-10
1788837991
ISBN-13
9781788837996
eBay Product ID (ePID)
3038498970

Product Key Features

Number of Pages
272 Pages
Publication Name
Deep Learning Quick Reference : Useful Hacks for Training and Optimizing Deep Neural Networks with TensorFlow and Keras
Language
English
Publication Year
2018
Subject
Machine Theory, Intelligence (Ai) & Semantics, Neural Networks, Data Processing
Type
Textbook
Author
Michael Bernico, Mike Bernico
Subject Area
Computers
Format
Trade Paperback

Dimensions

Item Length
3.6 in
Item Width
3 in

Additional Product Features

Intended Audience
Trade
Table Of Content
Table of Contents The Building Blocks of Deep Learning Using Deep Learning To Solve Regression Problems Monitoring Network Training Using Tensor Board Using Deep Learning To Solve Binary Classification Problems Using Keras To Solve MultiClass Classification Problems HyperParameter Optimization Training a CNN From Scratch Transfer Learning with Pretrained CNNs Training an RNN from scratch Training LSTMs with Word Embeddings From Scratch Training Seq2Seq Models Using Deep Reinforcement Learning Deep Convolutional Generative Adversarial Networks
Synopsis
Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep learning concepts and their implementations Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow. Book Description Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks. What you will learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges. Who this book is for If you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required., Dive deeper into neural networks and get your models trained, optimized with this quick reference guideAbout This Book* A quick reference to all important deep learning concepts and their implementations* Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more* Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow.Who This Book Is ForIf you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.What You Will Learn* Solve regression and classification challenges with TensorFlow and Keras* Learn to use Tensor Board for monitoring neural networks and its training* Optimize hyperparameters and safe choices/best practices* Build CNN's, RNN's, and LSTM's and using word embedding from scratch* Build and train seq2seq models for machine translation and chat applications.* Understanding Deep Q networks and how to use one to solve an autonomous agent problem.* Explore Deep Q Network and address autonomous agent challenges.In DetailDeep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples.You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks.By the end of this book, you will be able to solve real-world problems quickly with deep neural networks.Style and approachAn easy-to-follow, step-by-step guide to help you get to grips with real-world applications of training deep neural networks., This book is a practical guide to applying deep neural networks including MLPs, CNNs, LSTMs, and more in Keras and TensorFlow. Packed with useful hacks to solve real-world challenges along with the supported math and theory around each topic, this book will be a quick reference for training and optimize your deep neural networks.

Artikelbeschreibung des Verkäufers

Rechtliche Informationen des Verkäufers

Ich versichere, dass alle meine Verkaufsaktivitäten in Übereinstimmung mit allen geltenden Gesetzen und Vorschriften der EU erfolgen.
USt-IdNr.: GB 922696893
Info zu diesem Verkäufer

World of Books USA

88,7% positive Bewertungen5,2 Mio. Artikel verkauft

Mitglied seit Okt 2011
Antwortet meist innerhalb 24 Stunden
Angemeldet als gewerblicher Verkäufer
In 2002, World of Books Group was founded on an ethos to do good, protect the planet and support charities by enabling more goods to be reused. Since then, we've grown into to a global company ...
Mehr anzeigen
Shop besuchenKontakt

Detaillierte Verkäuferbewertungen

Durchschnitt in den letzten 12 Monaten
Genaue Beschreibung
4.5
Angemessene Versandkosten
5.0
Lieferzeit
4.5
Kommunikation
4.8

Verkäuferbewertungen (1.569.375)

Alle Bewertungen
Positiv
Neutral
Negativ